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THE EFFECT OF EXTERNAL DAMPING ON THE STABILITY
OF BECK’S COLUMNY
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Abstract—The stability of a cantilevered column subjected to a constant follower load in the presence of external
damping is investigated. It is shown that the critical load increases with increasing damping from the value of
20-05 EI/L? at zero damping to the limiting value of 37-7 EI/L* for large damping. This behavior is in marked
contrast to that of the internally damped column and also to that of conservative systems (where external damping
has no effect on the critical load).

The results of this analysis, which are based on a modal approximation, are corroborated by the results
obtained from the study of a standard two-degree-of-freedom model of the continuous column. Further con-
firmation is obtained from a computer analysis of the exact frequency equation.

THE EFFECT of damping on the stability of nonconservative systems has been the subject of
much recent interest (see [1] for bibliographical information); damping can have either
a stabilizing or destabilizing effect. The purpose of this note is to analyze Beck’s column,
a linear elastic cantilevered column subjected to a constant follower load at its free end,
when external damping of a linear viscous nature is assumed to be present. Leipholz [2]
and Nemat-Nasser, Prasad and Herrmann [3] have shown that the effect of this damping
is not destabilizing. In this note it is shown that the effect is indeed of a stabilizing nature
and the quantitative effects of this stabilization are derived. An interesting qualitative
result which seems to have escaped previous investigators is also obtained : contrary to
what one might expect, the critical load does not become unbounded as the damping
increases.

Consider the cantilevered linear elastic column shown in Fig. 1. The equation of motion
for the lateral displacement W(X, T) is modeled by the partial differential equation
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The X -axis lies along the straight equilibrium shape of the column, with X = Qat the built-in
end and X = L at the free end where the constant compressive load P is applied tangential
to the column. The time is denoted by T and p, E, I and b are, respectively, the linear density,
Young’s modulus, the moment of inertia of the cross-section and the coefficient of linear
viscous external damping. The boundary conditions are given by
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The problem is appropriately nondimensionalized by introduction of the quantities
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upon which (1), (2) become
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Consider a solution of the form
wix, t) = a(t) f(x), (5)
upon which (4) separates into the two equations
d%a da
—_— — + la = 6
dzz+2€dz+a 0 {6)
and
d4f d?f
cJ — A = 7
ax* T Paxe A =0 %

where 1 is a constant. Nontrivial solutions of {7) which satisfy the boundary conditions in
(4) are given by

f(x) = cosh yx — cos nx + u(y sin yx — 1 sinh yx) (8)
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where

i = (y* coshy + n? cos n)/(ny* sinh y + n*ysinn), 9)

v={_g+\/(1+%2)}*, (10)
ol

and 4 satisfies the frequency equation
24 cosncoshy + p/(A)sinysinhy + 24 + p> = 0. (12)

As p increases in value from zero, the two lowest roots 1 of (12), which are real, approach
each other. According to Beck [4] these two roots merge when p = 20-05; for higher values
of p these roots form a complex conjugate pair which shall be denoted by

A=atif. (13)

Substitution of (13) into (12) yields a complex equation, and setting the real and imaginary
parts equal to zero leads to two transcendental equations in o and f. These equations,
not listed here, are extremely complicated and untractable except for the special case
o — 0 which yields

p— 377, p—-191 as o—0. (14

However, one can easily obtain approximate values for « and § by using a modal approxima-
tion. Following Deineko and Leonov [5] the approximate frequency equation

A% + (13-36p-53-34n?)A + 12:14p* + 25-757%p + 65:387n* = 0 (15)
is derived with the use of the assumption

wix, 1) = @)y (x) + ¥ ()ya(x) (16)
where

y1(x) = 5 — cos 2nx — 4 cos nx,

3
2(x) = 28 — cos =X — 27 cos =, (17)
2 2
With 1 = a + i, (15) yields
a = 2667n% — 6:68p,
(18)
B = [—3248p® + 382-05n%p — 64597n*])*
for p > 20-23.
Recall that the differential equation (6) for a(r) has the solution
a(t) = 1€ + e (19)

where

O R VA (S} (20)
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If A = a + i, then
Qo=+ JE—a—if) or Q,=—¢+/(E —a+if) (21)

The column is asymptotically stable (i.e. w(x, ) - 0 as t — o0) if the real part of each Q
is negative. For Q of the form in (21), this stability condition is equivalent to the inequality
BZ

a>zgi

(22)
(see [2]). The column is unstable (i.e. w(x, t) can become unbounded as ¢t — o) if the real
part of at least one Q is positive, that is, if
ﬁz
The critical load p,, is defined such that the column is stable if p < p,, and unstable if
P > pe.- It follows from (22) and (23) that p,, is the minimal solution p of the equation

_F

(X—4—£2

(24)

where o and B are functions of p. With the use of the approximate values of « and f§ given
by (18), the previous equation becomes

1

26671 — 668p,, = :‘—5_2(~32-48p§r + 382:057%p,, — 64597n*). (25)
Solving for p., gives
PCYLZ 2 2 4 2
P = pr = 5-88n% + 0-41&% — J(1471n* + 1-557%E% + 0174, (26)

This result is depicted in Fig. 1 (solid line).

A comparison of the approximate expression (26) with the exact critical load may be
easily made for the extreme cases of zero damping and very large damping. For ¢ = 0 the
column is unstable whenever the frequency equation (12) has complex roots, that is,
when p > 20-05. The expression (26) yields p,, = 20-23 for £ — 0, a value 1 per cent higher
than the exact critical load. For the case & — o0, it is seen from (24) that the exact critical
load corresponds to a solution « — 0 of the frequency equation (12), and from (14) it
then follows that this load is given by p — 37-7. According to stability condition (26),
Per — 394 as & — oo (see the horizontal dashed line in Fig. 1), so that the approximate
critical load p,, is 45 per cent higher than the exact value as & — 0.

From these results, which are summarized in Fig. 1, it is concluded that external damping
has a stabilizing effect on Beck’s column. The critical load increases monotonically with
increasing damping but does not become unbounded ; in fact the lower and upper bounds
on the critical load are p = 20-05, corresponding to zero damping, and p = 377 for very
large damping.

Since these results were obtained by means of an approximate modal analysis, it
seems appropriate to corroborate them through another type of approximation. An often
used model for the cantilevered column is the inverted double pendulum of Fig. 1. This
model and several variants have been recently analyzed by Herrmann and his students.
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The bar lengths are both taken as L/2, the masses are 2m and m, and the restoring moments
at the joints are ¢, and c{¢, — ¢,). Since it is assumed that the damping is proportional
to the velocity along the double pendulum with proportionality constant b, the linearized
dissipation function is easily computed as D = (bL3/48)(4$? + 3¢,¢, + ¢2). Theequations
of motion of the model then are obtained, after appropriate linearization, as

3.1 L t . 1 .. [PL _
27

1 . 1 . 1 . 1 .
szz(Pl +Rbl}¢l —_ Cd’l + Zmlf(ﬁz + ﬁbl}(ﬁz + C¢2 = (.

Assuming a solution of the form ¢; = A,e” and letting

L jim PL b2

we obtain through a simple application of the Routh-Hurwitz conditions that for stability
it is necessary and sufficient that

FF2 - (B +25BYF + ¥ + &B>>0, F<36 F<35++4B, (29
and from this it immediately follows that the critical load is governed by
Fo = $18 + B = JI03 + B — 362 + B} (0)

At this juncture, it is important to relate the parameters of the model to those of the
continuous column. Clearly m = pL/3; the restoring moment proportionality constant ¢
is determined by the condition that the critical load of the model and of the column be the
same for zero damping, that is, [4,6]

EI c
2005P = 2(2086z) (31)

which yields ¢ = 4-81 EI/L. Hence, in terms of the variables of the original column, (30)
becomes
P.I?
El

= 334 + 019582 — /(202 — 0-503¢ + 0-038%). (32)

This result is shown in Fig. 1. It is similar both qualitatively and quantitatively to
the result obtained through the modal approximation.

In order to further verify the behavior of the critical load of the cantilevered continuous
column, a computer analysis of the exact frequency equation (12) was carried out for
several values of p. The following values of « and § were obtained :

P 20-06 20-50 21-60 22:00 24-00 2600 28-00
o 1213 1184 1151 108-5 95-25 8185 6831
B 4-557 32:04 46-48 66-33 93-64 114:1 1309

P 30-00 32-00 3300 34-00 35-00 3600 3700
o 54-62 40-74 3373 2666 19-54 12-35 5090
I 1456 1587 164-8 176-8 1765 182-1 187-5
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The stability condition (24) then yields corresponding values of £ for each p, and the resulting
critical loads are shown by x’s in Fig. 1. As expected from the discussion following (26),
these values are from 1 to 43 per cent lower than the critical loads obtained by the modal
approximation.
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AbcTpakT—Hccnenyercs yCTOHYHBOCTb KOHCOJNIbHOM KOJIOHHBI, IOABEPKEHHOH NEHCTBHIO TMOCTOSHHOM,
CleAsillieii HATPY3KH, TPH HAJMYMKM BHEWIHEro aemndupoBaHus. [Toka3zaHo, 4To KpuTuyeckas Harpyska
yBEJIHYAETCA ¢ poctoMm pemndupoBaHus ot 3Havenus 20,05 EI/L?, nna HyneBoro geMndupoBaHHA, N0
apenesibHOTO 3HaYeHus cocrassisiomiero—37,7 EI[L?, nns 3naunTenpHoro pemnéuposanus. Takoe
NOBEACHHE PA3HUTCA 3HAYMTENBHO MO CPAaBHEHHIO C BHYTPEHHBIM NeMIPUPOBAHHEM KOJOHHBI, & TaKxke
MO CPABHEHHIO C KOHCEPBATHUBHBIMM CHCTEMAMHM ‘y KOTODBbIX BHEluHee AeMIIGUPOBAHUE HE BBI3BbIBAET
HUKaKoro 3¢dexra Ha KPUMTHYECKYIO HATPY3KY .

Pe3ynbTathl 3TOTO aHa/KM3a, OCHOBAHHbIE HA MOJANILHOM NPUOIMIKEHHM, IIOATBEPXKAAIOTCA PE3Y/IbTa-
TaMH HOJIyYeHHBIMH [IPH HCCNIEAOBAHUM CTAHAAPTHOR MOJEIH HENPEPLIBHOH KOJIOHHBI, C 1IBYMS CTEIIEHAMH
cBobGonapl. [lanpHeiiliee MOATBEPXAEHUE TOJNYYaeTCs M3 aHaiu3a, FIPOBEJEHHOIO HA BBIYUCIMTE/ILHOH
MAILMHE, IS TOYHOTO YPABHEHUSA 4aCTOThI.



